ISSTA 2024
Mon 16 - Fri 20 September 2024 Vienna, Austria
co-located with ISSTA/ECOOP 2024
Wed 18 Sep 2024 16:30 - 16:50 at EI 9 Hlawka - Testing and Repairing Neural Networks Chair(s): Mike Papadakis

Neural networks (NNs) are known to have diverse defects such as adversarial examples, backdoor and discrimination, raising great concerns about their reliability. While NN testing can effectively expose these defects to a significant degree, understanding their root causes within the network requires further examination. In this work, inspired by the idea of debugging in traditional software for failure isolation, we propose a novel unified neuron-isolation-based framework for debugging neural networks, shortly IDNN. Given a buggy NN that exhibits certain undesired properties (e.g., discrimination), the goal of IDNN is to identify the most critical and minimal set of neurons that are responsible for exhibiting these properties. Notably, such isolation is conducted with the objective that by simply ‘freezing’ these neurons, the model’s undesired properties can be eliminated, resulting in a much more efficient model repair compared to computationally expensive retraining or weight optimization as in existing literature. We conduct extensive experiments to evaluate IDNN across a diverse set of NN structures on five benchmark datasets, for solving three debugging tasks, including backdoor, unfairness, and weak class. As a lightweight framework, IDNN outperforms state-of-the-art baselines by successfully identifying and isolating a very small set of responsible neurons, demonstrating superior generalization performance across all tasks.

Wed 18 Sep

Displayed time zone: Amsterdam, Berlin, Bern, Rome, Stockholm, Vienna change

15:30 - 17:10
Testing and Repairing Neural NetworksTechnical Papers at EI 9 Hlawka
Chair(s): Mike Papadakis University of Luxembourg
15:30
20m
Talk
Interoperability in Deep Learning: A User Survey and Failure Analysis of ONNX Model Converters
Technical Papers
Purvish Jajal Purdue University, Wenxin Jiang Purdue University, Arav Tewari Purdue University, Erik Kocinare Purdue University, Joseph Woo Purdue University, Anusha Sarraf Purdue University, Yung-Hsiang Lu Purdue University, George K. Thiruvathukal Loyola University Chicago, James C. Davis Purdue University
DOI Pre-print
15:50
20m
Talk
Interpretability Based Neural Network Repair
Technical Papers
Zuohui Chen Zhejiang University of Technology; Binjiang Institute of Artificial Intelligence, Jun Zhou Zhejiang University of Technology; Binjiang Institute of Artificial Intelligence, Youcheng Sun University of Manchester, Jingyi Wang Zhejiang University, Qi Xuan Zhejiang University of Technology; Binjiang Institute of Artificial Intelligence, Xiaoniu Yang Zhejiang University of Technology; National Key Laboratory of Electromagnetic Space Security
DOI
16:10
20m
Talk
See the Forest, not Trees: Unveiling and Escaping the Pitfalls of Error-Triggering Inputs in Neural Network Testing
Technical Papers
Yuanyuan Yuan Hong Kong University of Science and Technology, Shuai Wang Hong Kong University of Science and Technology, Zhendong Su ETH Zurich
DOI
16:30
20m
Talk
Isolation-Based Debugging for Neural Networks
Technical Papers
Jialuo Chen Zhejiang University, Jingyi Wang Zhejiang University, Youcheng Sun University of Manchester, Peng Cheng Zhejiang University, Jiming Chen Zhejiang University; Hangzhou Dianzi University
DOI
16:50
20m
Talk
Certified Continual Learning for Neural Network Regression
Technical Papers
Long H. Pham Singapore Management University, Jun Sun Singapore Management University
DOI

Information for Participants